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Abstract: Degrading of infrastructure not only results in lower service level but also in higher 
risk of earthquake damage.  The maintenance/replacement should be well scheduled so as to 
maximize an economic value of infrastructure.  On the other hand, the design of 
infrastructure should also follow the maximization principle.  The design and the schedule of 
maintenance/replacement interact with each other.  Then, we should optimize both of them in 
a unified framework.  This paper proposes an optimal design problem consistent with 
maintenance/replacement scheduling.  The problem is a type of bi-level programming, which 
contains an optimal scheduling problem at lower level and an optimal design at upper level.  
In the optimal scheduling, the degradation of infrastructure by fatigue is modeled as the 
Markov Chain Process.  In the optimal design, the best material type is chosen.  After we 
formulate a general framework for the problem, we apply it to a case in practice.  The results 
suggest that the schedule and the design interact with each other and are very critical for the 
economic value of infrastructure. 

 
 
1.  INTRODUCTION 
 

Degrading of infrastructure not only results in lower service level but also in higher risk of 
earthquake damage.  The maintenance/replacement should be well scheduled so as to maximize an 
economic value of infrastructure.  On the other hand, the design of infrastructure should also 
follow the maximization principle.  The design and the schedule of maintenance/replacement 
interact with each other.  Then, we should optimize both of them in a unified framework.  This 
paper proposes an optimal design problem consistent with a maintenance/replacement strategy.  
The problem is a type of bi-level programming, which contains an optimal scheduling problem at 
lower level and an optimal design at upper level.   
 
2. MODEL 
 

Design of a structure is formalized as a bi-level programming. The upper level problem is to 
choose design variables such a material type, a size of member and a shape so as to maximize the 
economic value of an infrastructure.  The programming at the upper level is, 
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where ( )V g  is the net present value of the infrastructure defined at the lower level, (0)X  the 
initial state of the infrastructure, d  the design variable and xD  the feasible set of d . 

The lower level problem is to find the rule of maintenance/replacement action ( )u t  in any 
periods in time horizon indicated by {0, , }t T∈ L .  Benefit/cost flow is dependent on the state of 
the infrastructure ( )X t , action ( )u t  and the design d .  The net present value, which is the 
objective function at the upper level, is defined as  
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s.t.  
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( )b g  is the benefit in the period t . ρ  is the social discount rate. ( )C g  is the operation cost. 
( )R g  is the cost of maintenance/replacement action. ( )FC g  is the recovery cost when damaged by 

earthquake and ( )FP g  is the probability that the structure is damaged in the unit period. ( )I g  is 
the initial cost or the construction cost of the structure.   The state of the infrastructure ( )X t  
evolves with the state equation in (2.b). The initial state (0)X  is given. 

The probability of damage by earthquake is assumed to be dependent on the state ( )X t .  If 
the structure is more deteriorated, then the probability is higher.  The state equation in the above 
represents the stochastic process which includes the random factor ω .   

The programming described by (2.a) – (2.c) is a kind of stochastic control problem.  To solve 
it, the Bellman’s principle of optimality is often applied and therefore the Bellman’s equation is 
employed. 
 
3. APPLICATION 
 
3.1 Specification of the model 
 

In this paper, we apply the model formalized in the previous section to design of a bridge.  
The bridge is a steel bridge whose initial cost can be simply estimated by total weight.  The design 
is the choice of a material type {1,2,3}d ∈ , where 1 is the strong steel, 2 the normal steel and 3 the 
week steel. We first specify the state ( )X t  in discrete form ( ) ( ) {1, 2,3,4}X t i t= ∈ . Then the 
action ( )u t  is also specified as 
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Functions in (2.a) and (2.b) are specified as, 
 

( ( ), ( ), ) (1 )tb X t u t d bψ λ= +                                   (4.a) 

( ( ), )C X t d c=                                              (4.b) 

1( ( ), ( ), ) { (1 ) ( ( )) ( ( )) ( ( ) )} ( ( ), )tR X t u t d b l i t R i t w d A u i t tψ λ α β υ= + + + +                (4.c) 

2( ) ( )I d w d Aυ= +                                           (4.d) 

3( ) ( )FC d w d Aυ= +                                           (4.e) 

and ( ( )) ( ( ))F FP X t P i t=  .                                          (4.f) 

 
In (4.a), b  is the annual benefit of a unit of traffic volume, ψ  the initial annual traffic volume 
and λ  the annual growth rate of traffic.  In (4.b), the operation cost is simply assumed to be 
constant. In (4.c), the cost of maintenance/replacement action consists of  (1 ) ( ( ))tb l i tψ λ+  the 
reduction of benefit where ( ( ))l i t  is the rate of stopping service due to the action, ( ( ))R i t  the 
component dependent on the state ( )i t  and 1( )w d Aυ +  dependent on the weight of the bridge. 
This cost is valid when the action is done ( ( ), ) 1u i t t = . 

The stochastic process denoted by the state equation in (2.b) is rewritten into the Markov 
Chain, whose transition probability matrix is given by 
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(5.a) indicates that the probability matrix for the unit of traffic volume (a million cars per year) 

. . ( )w o dM  must be multiplied with itself for the times (1 )tψ λ
φ
+ . Then in the year when traffic volume 

is large, the probability of deterioration becomes higher.  The matrix in (5.b) means that whenever 
the action is done, the state always comes back to ( ) 1i t = . 

The Bellman equation for the model with the specifications is  
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Solving the Bellman equation by backward induction (See Ueda and Kimoto(2003) and 
Judd(1998)), we can calculate the net present value in (2.a) for each design d .  

The parameters and necessary information for specified function and matrices in (4.a)-(5.b) are 
listed in Table 1. 
 

 (a) Material type  
 Strong (1) Normal (2) Week (3) 

Spec SM570 SM490 SM400 

Cost ( )dυ  140,000(yen/ton) 110,000(yen/ton) 90,000(yen/ton) 

                         (b) Parameters for benefit and cost  
b  c  w  

1 2 3A A A= =  1/(1 )ρ+  

60 (yen/car) 50000 (yen) 300 (ton) 250,000,000(yen) 0.96 
                          (c) Parameters for maintenance/replacement action 

State ( )i t  Crack Action Cost of Action 

1( ( )) ( ( )R i t w d Aα β υ+ +  

1 < 10 mm TIG Processing 5,000,000 (yen) 
2 10 mm - 15mm Welding 10,000,000 (yen) 
3 15mm – 30 mm Steel Plate 25,000,000(yen) 
4 30 mm < Replacement Initial Cost 

 (d) Parameters for earthquake risk 

State ( )i t  Probability of damage 

( ( ))FP i t  

1 0.05 
2 0.1 
3 0.2 
4 0.35 

                 (e) Matrix for Markov Chain for the unit of traffic volume (a million cars/year) 

. .

0.9930 0.0070
0.9915 0.0085

(1)
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1.0000
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. .

0.9846 0.0154
0.9840 0.0160

(2)
0.9576 0.0424

1.0000
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 
 =
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 
 
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. .

0.9630 0.0370
0.9580 0.0420

(3)
0.8670 0.1330

1.0000

w o

 
 
 =
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 

M
 

 
Table 1 Setting of parameters in case study 

 



3.2 Results 
 

We first compare the optimal strategy of maintenance/replacement action for each material 
type when the annual growth rate of traffic is 6%.  Figure 1 shows the strategy for each type.  
Each panel in the figure indicates that for example if the state in the period 4 becomes 2,3, or 4, 
then do the action, otherwise do noting. However, the strategy is not time invariant.  Furthermore, 
we find differences in strategy between material types.  Picking up the period 22, we find that if 
the state becomes 2,3, or 4, then do the action in the cases of design 1 (strong steel) and 2 (normal 
steel), and in contrast that if the state becomes 1, 2,3, or 4, then do the action in the cases of design 
3 (week steel).  
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(a) Material type 1 (strong steel) 
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(b) Material type 2 (normal steel) 
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(c) Material type 3 (week steel) 

 
Figure 1  Comparison of maintenance/replacement strategy between material types 

 
The differences in maintenance/replacement strategy also result in differences in the net 

present value of the bridge as shown in Figure 2.  The material type 1 (strong steel) indicates the 



highest economic value, 2 (normal steel) the second and 3 (week steel) the lowest.   As a solution 
of the upper level programming, the optimal design as material choice is the type 1 (strong steel) in 
this case. 
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Figure 2  Comparison of the economic value of the bridge between material types for 6% traffic growth 
 

As the society becomes more aged or has less population, the traffic volume may decrease. It is 
of interest that we examine the case that the annual growth rate of traffic is negative, –3%.  Figure 
3 shows the net present value of the bridge for each material type.  In contrast to the case of 6% as 
already examined, the material type 3 indicates the highest economic value.  The optimal design 
has varied from the previous case.    
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Figure 3  Comparison of the economic value of the bridge between material types for -3% traffic growth 

 
Throughout cases in various setting of parameters, we have found that the optimal design and 

strategy of maintenance/replacement action interact with each other.  Although the implications 
are still case-specific, the approach of the bi-level programming has been proved to be useful in the 
economic design of the infrastructure. 
 
4. CONCLUDING    REMARKS 
 

We have proposed a bi-level programming model for the economic design of an infrastructure. 
The results of case studies suggest that the schedule and the design interact with each other and are 
very critical for the economic value of infrastructure.   

We should try to enhancement of the model and examination of the model throughout more 
and more case studies. In particular, stochastic process of deterioration must be modeled more 
carefully. 
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