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Abstract:  During the 1995 Hyugo-ken nanbu earthquake in Japan, brittle cracking accidents were occurred 
in several steel bridge piers. From the investigations on the cracked structures, deterioration of fracture 
toughness of steel by the effect of large plastic strain is considered as the dominate cause. This study is 
aiming to determine the required fracture toughness to prevent brittle fracture during earthquakes in steel 
bridge piers by discussing on the following objectives. 1) To identify the characteristics of strain history 
during large earthquakes in steel bridge piers by dynamic FEM analysis, and based on that, 2) to determine 
patterns of strain history that should be considered by discussing the process of the occurrence of brittle 
fracture, and 3) to evaluate the extent of deterioration of fracture toughness of steel by various patterns of 
large plastic strain including reversed patterns by CTOD tests. 

 
 
1.  INTRODUCTION 
 

During the 1995 Hyogo-ken nanbu earthquake in Japan, many civil structures were damaged and 
also in steel bridge piers. Brittle cracking accidents were occurred in some steel bridge piers (JSCE 
1995), which were the first experience in steel bridge piers. Figure 1 shows the cracks occurred during 
the earthquake. Many investigations have been conducted to prevent local buckling from the 
viewpoint of structural details and to ensure high ductility of steel columns, and the limitation of the 
parameters like width-thickness ratio have been suggested for design of new steel piers (T. Usami et al 
1995). Also, some investigations (C. Miki et al 1998, 1999, 2000, I. Okura et al 1996, JWES 1999) on 
the prevention against brittle fracture accidents in bridge piers were conducted and concluded that 
deterioration of fracture toughness of steel due to effect of introduced large plastic prestrain could be 
considered as the main cause of brittle fracture. Therefore, in order to prevent brittle fracture, it is 
necessary to use the steels that have enough fracture toughness even after plastic prestrain experience. 
However, the required level of fracture toughness of the steel to prevent brittle fracture during 
earthquakes in steel bridge piers has not been clear until so far. This study is aiming to determine it, 
and so the followings were considered as the objectives. 

1) To identify the characteristics of plastic strain history during earthquakes in steel bridge piers 
and to determine the patterns of strain history that should be considered by discussing the 
process of the occurrence of brittle fracture. 

2) To evaluate the extent of deterioration of fracture toughness of steel by various patterns of 
plastic prestrain. 

Finally, the discussions for suggesting the required fracture toughness of steel to prevent 
brittle fracture were made by organizing all the results of fracture toughness tests. 

 

mailto:esasaki@cv.titech.ac.jp
mailto:miki@cv.titech.ac.jp


 
 
 
 
 

 
 
 

2. CHARACTERISTICS OF 
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The seismic acceleration waves measured at JR Takatori station and at Kobe Marine Observatory 
in Hyogo-ken nanbu earthquake were used in the analyses. Figure 3 shows the displacement history at 
the center of the beam. The values of the yield displacement δy and δ95 in Figure 3 were obtained by the 
analyses of cyclic static loading under displacement control at point A. Figure 4 illustrates the strain 
history in direction of component axis near the corner of beam-to-column connections. In both of the 
cases of Takatori and Kobe, the maximum displacement was in the level over δy and the maximum 
value of strain during the earthquake was observed at that portion and reached almost 10%. And it can 
be found that the strain history has the tendency to be one-sided to the region of tension or 
compression and vary in that region. Finally, according to our previous experimental study (E. Sasaki 
et al 2001), the measured maximum strain at δ95 near the corner of beam-to-column connections 
reached less than 10%. 

 
 
 
 
 
 
 
 
 

 
3. SCENARIOS OF BRITTLE FRACTURE DURING EARTHQUAKES 
 

As the scenarios of brittle fracture during earthquakes, the following four types shown in Figure 5 were 
considered. In case of Type I, cracks will be occurred by large compressive plastic train, for example, 
in the compressive side of local buckling zone (H. Inoue et al 1986). The size of the cracks is small. In case of 
Type II, cracks are occurred by tensile strain and the following compressive strain makes them sharp. 
The cracks in Type III and IV occur by fatigue induced by live load like traffic load. Actually, many 
fatigue cracks were found in steel bents recently (H. Morikawa et al 2002). The deterioration of steels 
due to plastic strain history, initial cracks and their size and sharpness become our interests. 

 
4. DETERIORATION OF FRACTURE TOUGHNESS OF STEELS BY LARGE PLASTIC   
PRESTRAIN 

 
The used structural steels were JIS-SM490YB and JIS-SM570Q. They have been commonly used 

in construction of steel bridge piers. The chemical composition and the mechanical properties of them 
are shown in Table 1 and Table 2, respectively. Various patterns of plastic prestrain shown in Table 3 
were considered and the effects of them on the fracture toughness of steels were evaluated by CTOD 
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Figure 5 Scenarios of Brittle Fracture 
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Figure 6 The Specimen for Introduci
Table 1 Chemical Compositions 

Si Mn P S Cu Ni Cr V

0.46 1.56 0.02 0.005 0.01 0.01 0.02 0.04
0.012 0.005 0.005
0.14 0.23

Table 2 Mechanical Properties 

ion CVN

(Joul)
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Unit：mm
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Pattern Prestrain Comment

AP0, BP0 no prestrain

AP1, BP1 uniform tensile prestrain (10%)

AP2, BP2 uniform compressive prestrain (10%)

AP3, BP3
cyclic prestrain
in tensile region (10%)

AP4, BP4 cyclic prestrain
in compressive region (10%)

AP5, BP5 uniform compressive prestrain (5%)

AP6, BP6 cyclic prestrain in tensile region  (5%)

 *The initial letter of the pattern name shows type of steel.
     (A: JIS-SM490YB, B: JIS-SM570Q)
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 with SM570Q  
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Photo 1 The Fixtures to Prevent Slips Between the Chucks
Table 3 Patterns of Plastic Prestrain 



tests. As the levels of prestrain, two levels of 10% and 5% were taken into consideration because 
reversed patterns of prestrain up to 10% level could be introduced in this study. In order to introduce 
all the prestrain patterns, the specimens shown in Figure 6 were used to make deformation 
concentrated at the center. Furthermore, it was needed to invent the fixtures for the direction guides for 
the chucks in the testing machine shown in Photo 1 to prevent the local buckling of specimens in 
compressing processes. After the introducing plastic prestrain, bar specimens for tensile tests (Figure 
7) and CTOD specimens (Figure 8) were cut from the specimens as shown in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 shows the stress-strain relationship after introduction of prestrain for both of the steels.  
The stress-strain relationship changed by the effect of the prestrain, and so the yield point also varied 
with the patterns of prestrain. 

Figure 11 shows the relationship between test temperature and critical CTOD values. The 
significant and characteristic deterioration behaviors of the two types of steels were demonstrated. On 
SM490YB steel, the patterns of prestrain in compression region and the reversed patterns caused more 
deterioration of fracture toughness than those in tensile region and the uniform patterns, respectively. 
Also, the difference of the level of prestrain, the extent of deterioration of fracture toughness in case of 
10% is larger than that in case of 5%. However, in SM570Q steel, no remarkable changes of fracture 
toughness were observed in most patterns of prestrain, and only in case of uniform compressive, much 
deterioration of fracture toughness occurred. From these results, among the patterns showed in the 
process of brittle fracture, uniform compressive prestrain can be considered as the critical pattern to 
fracture toughness of steel. As mentioned here, the extent of deterioration of fracture toughness 
depends on the types of steel and the patterns of prestrain. 
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Figure 10 Stress-Strain Relationship 
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6.  CONCLUSIONS 
 

The conclusions of this study can be summarized as follows. 
1) By the elasto-plastic dynamic FEM analysis, the strain histories in steel bridge piers during large 

earthquakes were investigated. The strain histories have the tendency of being one-sided to the region of 
tension or compression and varying in that region.  

2) The plastic strain patterns that should be considered were explained by discussing the processes of 
brittle fracture, and the effects of the various patterns of plastic prestrain including them on fracture 
toughness of steels were investigated by CTOD tests. The extent of deterioration of fracture 
toughness depends on the types of steel and the patterns of prestrain. On SM490YB steel, 
compressive prestrain and reversed prestrain make fracture toughness more deteriorated than tensile 
prestrain and uniform prestrain, respectively, and the deterioration of fracture toughness by prestrain 
in 10% level was more than that by prestrain in 5% level. On SM570 steel, in all the prestrains but 
uniform compressive prestrain in 10% level, no remarkable deterioration of fracture toughness were 
not observed. 

3) By arranging all the results of this study and our previous investigations concerned with the effects 
of plastic prestrain, the temperature shift of 50 degrees of Celsius was suggested as the extent of 
deterioration of fracture toughness of steels due to the effects of plastic prestrain that should be 
considered in determination of the required fracture toughness of steels to prevent brittle fracture in 
steel bridge piers to the displacement level δ95. 
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